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Abstract

Dynamically adaptive numerical methods have been developed to efficiently solve differential equations whose solutions
are intermittent in both space and time. These methods combine an adjustable time step with a spatial grid that adapts to
spatial intermittency at a fixed time. The same time step is used for all spatial locations and all scales: this approach clearly
does not fully exploit space–time intermittency. We propose an adaptive wavelet collocation method for solving highly
intermittent problems (e.g. turbulence) on a simultaneous space–time computational domain which naturally adapts both
the space and time resolution to match the solution. Besides generating a near optimal grid for the full space–time solution,
this approach also allows the global time integration error to be controlled. The efficiency and accuracy of the method is
demonstrated by applying it to several highly intermittent (1D + t)-dimensional and (2D + t)-dimensional test problems.
In particular, we found that the space–time method uses roughly 18 times fewer space–time grid points and is roughly 4
times faster than a dynamically adaptive explicit time marching method, while achieving similar global accuracy.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Mathematical modeling of problems in science and engineering (e.g. turbulence, reactive or non-reactive
flows [1]) typically involves solving nonlinear partial differential equations (PDEs). A wide range of spatial
and temporal scales must often be resolved in order to properly solve these equations [2]. However, in many
situations the small spatial scales are highly localized, and thus efficient solution of the problem requires a
locally adapted grid. A uniformly fine grid is clearly inefficient for such problems. Turbulence is a well-known
example of a problem with high intermittency [3,4]. In high Reynolds number turbulence the number of
degrees of freedom scales like the cube of Reynolds number, Re3, in a uniform mesh that resolves the smallest
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doi:10.1016/j.jcp.2005.10.009

* Corresponding author.
E-mail addresses: alamj@math.mcmaster.ca (J.M. Alam), kevlahan@mcmaster.ca (N.K.-R. Kevlahan), Oleg.Vasilyev@Colorado.

EDU (O.V. Vasilyev).

mailto:alamj@math.mcmaster.ca
mailto:kevlahan@mcmaster.ca
mailto:Oleg.Vasilyev@Colorado.EDU
mailto:Oleg.Vasilyev@Colorado.EDU


830 J.M. Alam et al. / Journal of Computational Physics 214 (2006) 829–857
active structures in space and time [5]. Since turbulence usually occurs at high Reynolds number (e.g. Re � 106

for a typical aeronautical flow), it is clear that any successful direct numerical simulation (DNS) of turbulence
must take advantage of the flow�s high intermittency [6,7]. Because of this intermittency, we expect that the
minimum number of computational elements required is actually much smaller than Re3.

Recently there has been increasing interest in developing adaptive [8–15] numerical methods for solving
elliptic [16–20] and time-dependent [21–35] partial differential equations. Existing adaptive numerical methods
fall into two classes: error indicator based (where the grid is refined to resolve gradients of a physically relevant
quantity), and error control based (where the error is estimated and the grid is refined to ensure this error is less
than a prescribed tolerance). The error-indicating strategy does not control the error directly, but instead con-
trols the mesh coarsening and refinement. The error-estimating strategy minimizes the error as measured in an
appropriate norm, which leads to an optimal mesh size distribution.

Wavelets have proved to be an efficient tool in developing adaptive numerical methods which control the
global (usually L2) approximation error [17,18,21,24,26,35]. The goal of the collocation-based nonlinear wave-
let approximation is to obtain the best approximation of a function on a near optimal grid. The collocation
approximation has a one-to-one correspondence between the wavelet expansion coefficients and grid points.
Thus, nonlinear filtering of wavelet coefficients automatically refines the computational grid. Since functions
and operators can be computed with a given accuracy, adaptive wavelet method provides global error control
for the adaptive solution of differential equations.

Liandrat and Tchamitchian [21] proposed the first wavelet-based adaptive method for partial differential
equations. Until the work of Sweldens [36], the research effort was focused on compressing both the differen-
tial operators and the solution using Galerkin projection. The early work found in [37–39] demonstrated the
use of wavelets to find the numerical solution of PDEs with periodic boundary conditions. Galerkin-based
wavelet methods for linear elliptic problems were studied in [16,40–42]. Schneider [43] used reliable and effi-
cient a posteriori error estimates for adaptive multi-scale wavelet-Galerkin schemes for linear elliptic PDEs.
The error achieved by adaptive wavelet schemes [16,17,19] is proportional to the smallest error realized by
the wavelet approximation, i.e. these schemes are asymptotically optimal for elliptic problems [20]. In addi-
tion, adaptive wavelet methods are fast (at least for large problems) since the computational complexity scales
like the number of wavelets retained in the approximation, OðNÞ.

Adaptive wavelet schemes have also been used for solving time dependent partial differential equations
[21,22]. A more detailed derivation of fast and adaptive algorithms, projection of the solution and spatial
derivatives on wavelet space, relationship between sparseness of the discretized system and the vanishing
moment property of wavelets was developed by Beylkin and Keiser [29]. Debussche et al. [44] developed a
multi-level Fourier–Galerkin method for homogeneous turbulence. The main difficulties of a Galerkin-based
wavelet method are the efficient computation of nonlinear operators, and the implementation of general
boundary conditions. These difficulties led to the development of collocation-based adaptive wavelet methods,
e.g. [25,26,28]. Following the second-generation multi-resolution approximation of Sweldens [45], a multi-level
adaptive wavelet collocation method was developed by Vasilyev and Bowman [34], which was applied to a
wide variety of initial value problems problems [35]. The adaptive wavelet collocation method (AWCM)
has since been used to construct a multi-level adaptive elliptic solver [46], two- and three-dimensional simu-
lation of fluid–structure interaction [47–49], and a wavelet-based alternative to large eddy simulation [50].

To the best of our knowledge, all existing wavelet methods for time-dependent problems adapt the spatial
grid dynamically in the region of intermittency. This means that mesh refinement or coarsening is automatic if
the solution develops strong gradients, or if these gradients diffuse. If the solution is intermittent in both space
and time, one adapts the spatial mesh to the solution at a fixed time and uses an adjustable time step to control
the local error in time [22]. This approach enforces the same time step for all spatial locations, which is clearly
not optimal for problems which are simultaneously intermittent in both space and time.

Following the classical time marching technique, an adaptive wavelet method discretizes the PDE to produce
a system of ODEs with wavelet coefficients as time-dependent unknowns (in the Galerkin formulation), or
nodal approximations as time-dependent unknowns in the collocation approach. This method adapts the spa-
tial grid as shocks or any localized structures develop or move in a time-dependent solution. The dynamically
adjusted time stepping procedure determines the maximum allowable time step for the spatially adapted grid,
or for all the wavelet modes, at any instant. However, although the spatial error is controlled by the adaptive
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wavelet approximation, the global error in time is uncontrolled. There is no guarantee that the temporal trun-
cation error will not accumulate over time and eventually exceed the desired error tolerance. Often one needs to
integrate the PDE for an arbitrarily long period of time. The spurious effect of accumulated error can cause the
results of the calculation to become unreliable, even though the spatial error is controlled at each time step.

Two approaches have been proposed to control the global error in time. The first is the variational integra-
tor approach developed by Marsden and his co-workers [51–56], where the global time integration error is
reduced significantly so that the appropriate conservation laws are satisfied to within a desired tolerance
for arbitrary times. An example of the second approach is the recent work of Tremblay et al. [57] who use
a time-continuous space–time finite element formulation. This method, however, does not use automatic grid
adaptation in the space–time computational domain.

In this paper, we develop a simultaneous space–time AWCM for time-dependent PDEs. Our aim is to
address the two shortcomings of current numerical methods mentioned above: the inefficiency of using a single
time step for all spatial locations, and the lack of control of the global error in time. The simultaneous space–
time adaptive wavelet solution should produce accurate solutions for arbitrary times on a near-optimal space–
time grid.

The paper is organized as follows. In Section 2, we briefly review the AWCM. Section 3 describes the pro-
posed numerical method. The ideas behind the wavelet-based time integration technique for ODEs and the
space–time integration technique for PDEs are explained in Sections 3.2 and 3.3. Section 3.6 outlines the wave-
let-based full approximation scheme (FAS) we have developed for solving the nonlinear algebraic problem
which results from full discretization of the time-dependent PDE. In Section 3.8, we describe a way of splitting
the space–time domain into subdomains in the time dimension. This allows for calculation over arbitrary long
times given the available computational resources. In Section 4, we present the results of numerical experi-
ments using the (1D + t) Burgers equation and (2D + t) vorticity equation in order to verify the efficiency
and accuracy of the proposed numerical method. We summarize the paper and discuss future research direc-
tion in Section 5.

2. Second generation adaptive wavelet discretization of PDEs

Our AWCM is based on the second generation wavelets developed by Sweldens [45,58,59], and we will con-
sider general boundary value problems of the form:
Lu ¼ f in X; ð1Þ
Bu ¼ g in oX; ð2Þ
where L is a general partial differential operator and B is an operator that defines proper boundary condi-
tions. X is a space–time domain such that
X ¼ D� ð0; T Þ; ð3Þ
where D � Rn, T 2 Rþ, X is open, connected, and bounded set with boundary oX, i.e. �X ¼ X [ oX. A point in
�X is denoted by x ¼ fx1; x2; . . . ; xn; xnþ1gT. If n = 0, then �X ¼ ½0; T � is a closed interval. When n = 1, we will be
using (x, t) 2 X to denote points in X. We will assume that all functions are from the function space L2(X)
unless otherwise stated.

2.1. Multi-scale decomposition

In the second generation multi-resolution approximation, functions are approximated using tensor product
second generation wavelets that are constructed on a nested set (Gj � Gj+1) of collocation points
Gj ¼ xj
k 2 �X : xj

k ¼ xjþ1
2k ; k 2Kj; j 2 Z

� �
; ð4Þ
where k denotes the position, j denotes the level or scale, and xj
k are the collocation points in �X with n = 0.

Here Z and Kj are some suitable index sets. Note that collocation points xj
k can be distributed uniformly,

xj
k ¼ 2�jk, or non-uniformly [34].
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To illustrate the second generation wavelet discretization of partial differential equations, let us consider the
multi-scale decomposition of a function u(x) at a certain level of resolution J P 0:
uJ ðxÞ ¼
XJ

j¼0

X
k2Kj

dj
kw

j
kðxÞ; J !1; ð5Þ
where wj
kðxÞ are localized basis functions (wavelets) and dj

k are expansion coefficients [60]. The major strength
of the wavelet decomposition (5) is that the wavelet coefficient dj

k measures the local variation of u(x) at scale
2�j near xj

k. These coefficients should decay quickly to zero in the smooth regions, and should be large only in
the region where the gradient of u(x) is large. This behavior suggests that there exists a decreasing sequence of
positive numbers �J such that 8j P J ; jdj

kj < �J . In other words, any truncation of the above infinite sum over
j is an approximation of u(x) at scale 2�j. Secondly, if u(x) is smooth, except at some isolated points, the above
truncation requires a small number of coefficients to approximate u(x). Thus, the multi-scale decomposition
not only approximates a function, it also compresses it.

2.2. Adaptive approximation

For intermittent functions, the coefficients dj
k �s are large only for those positions k where the function has a

steep gradient. Therefore, discarding coefficients whose magnitudes are smaller than a given threshold � trun-
cates the infinite sum (5) to a finite sum, as well as compressing the function. The truncated sum uJ(x) is a good
approximation of u(x) at level J in the weighted residual sense, i.e.
Z

X
ðuðxÞ � uJðxÞÞdðx� xJ

k Þdx ¼ 0. ð6Þ
This restriction establishes a one-to-one correspondence between dJ
k and xJ

k . The grid adaptation strategy is
based on the fact that discarding a wavelet coefficient is equivalent to discarding the corresponding collocation
point. To construct a grid that adapts to the intermittent solution we collect all collocation points xj

k such that
jdj

kjP �; i.e.
Gj
� ¼ xj

k 2 X : xj
k ¼ xjþ1

2k ; k 2Kj; j 2 Z; jdj
kjP �

� �
. ð7Þ
Adaptive second generation wavelet decomposition then takes the following form:
uJ
� ðxÞ ¼

XJ

j¼0

X
k2Kj

jdj
k jP�

dj
kw

j
kðxÞ. ð8Þ
For functions that have localized structure in X, Gj
� is much more compressed than Gj for all j. The decom-

position (8) is usually known as nonlinear approximation in a wavelet basis.
2.3. Computing derivatives on adaptive grids

Approximating derivatives of a function in a collocation-based method is straightforward. Analogous to
the continuous case, the derivative of a function is approximated from the approximation of the function
on a grid GJ; i.e. from the nodal values of the function. The derivative Dmu of order m is computed on a grid
Gj from the values uðxj

kÞ of the function u(x),
Dmuðxj
kÞ ¼

X
l

Dmj
kl uðxj

kÞ. ð9Þ
The entries Dmj
kl can be determined by applying a finite difference formula on uj(x); i.e. we can apply the finite

difference approximation to uj(x) on grid Gj. When the grid is not uniform (e.g. Gj
�), we can use a procedure in

computing derivatives as explained by Vasilyev and Bowman [34] and Vasilyev and Kevlahan [46]. This pro-
cedure corresponds to a local finite difference operator that uses neighboring points of xj

k to compute Dmuðxj
kÞ

at the appropriate level of resolution [34].
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Thus, the adaptive wavelet method combines the fast second generation wavelet transform with finite dif-
ference approximation of derivatives. For intermittent functions, the number of active collocation points N is
minimal (see [19,60,20]). The computational cost of calculating the derivatives is only OðNÞ, which is the same
as the computational cost of wavelet transform. The accuracy and efficiency of the adaptive lifted interpolat-
ing wavelet differentiation is examined by Vasilyev [35]. On a uniform grid, this technique is consistent with
standard finite difference stencils.

2.4. Analytical error estimates

Let us truncate the sum (5) at level J and define the residual of truncation by
rJ ðxÞ ¼ uðxÞ � uJ ðxÞ. ð10Þ

In multi-level wavelet approximation of functions and derivatives, the error depends on the wavelet threshold-
ing parameter � and the order of the wavelets [61]. Due to the one–to–one correspondence between the wave-
lets and the collocation points, one can relate the error with the active grid points. The most important feature
is that the approximation error has a global control throughout the domain. For sufficiently smooth functions
u(x), we can find an � such that jdj

kj < � 8j P J and so the residual of approximation at level J is upper
bounded as [61]
jrJ ðxÞj � �; �! 0. ð11Þ

Eq. (11) is independent of the dimensionality of the problem. Since the number of active collocation points
depends on the dimension and the order of wavelets being used, one can show that the number of active coef-
ficients satisfies
N � ��n=p; �! 0; ð12Þ

where p is the order of wavelets used and n is the dimensionality. In other words, the truncation error is related
to the number of terms retained as
krJ ðxÞk2 �N�p=n; �! 0. ð13Þ

The accuracy of the differentiation procedure was examined by Vasilyev and Bowman [34] for the one-dimen-
sional case and by Vasilyev [35] for the multi-dimensional case. The error in the adaptive wavelet approxima-
tion of derivatives is
kDm
xi

uðxÞ � Dm
xi

uj
�ðxÞk2 �N�ðp�mÞ=n; �! 0; ð14Þ
where Dm
xi

stands for derivative of order m in the xi direction.

3. Proposed numerical method

3.1. Background and motivation

Let us consider the general parabolic initial value problem:
du
dt
¼Fðu; tÞ; u 2 Rn; t 2 ð0; T Þ; ð15Þ

uð0Þ ¼ u0; ð16Þ
where F represents any function (usually nonlinear). In the classical time-marching scheme, we divide the
interval [0, T] into N sub-intervals such that tn = nDt, where Dt is the width of each of the sub-intervals.
We consider a single sub-interval [tn, tn+1], for some n, and assume that u at t = tn is known. Using a suitable
numerical method (e.g. forward difference in time), we can compute u at t = tn+1 and repeat for the next sub-
interval [tn+1, tn+2]. Thus, starting with the initial value, we march forward in time to compute the solution at
each of the discrete temporal locations. In other words, we solve a sequence of algebraic problems, each of
which is defined a sub-interval of [0, T].
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Two major difficulties arise in the time marching scheme. First, the truncation error accumulates in time.
Let us assume that the local truncation error of the scheme is O(Dta). Then the global error after N time steps
is O(Dta�1), where it is assumed that N � 1/Dt. However, it is easy to see that global error may become arbi-
trarily large if N� 1/Dt. Reducing the time step reduces the error locally, but provides no global error control
[62]. For example, if we consider a scheme with a = 2 and Dt = 10�2, we expect the global error at the end of
102 time steps (i.e. N � 1/Dt) to be O(10�2). This error will be O(1) after 104 time–steps, if we continue march-
ing. Clearly, reducing the time step will reduce the error only locally: the time integration error will continue to
accumulate. Secondly, this process uses the same time step for all components of u 2 Rn even though the prob-
lem may have multiple time scales. When the problem (15)–(16) is nonlinear, there is no simple way to adopt a
non-uniform time stepping such that different components of u use different time steps. The conventional
dynamically adjusted time stepping procedure only determines the maximum allowable time step at any par-
ticular time; it does not resolve the natural time scales of the governing dynamical system. Our goal in the
following is to develop an AWCM-based method that addresses both these problems: global error control
in time and local time stepping.
3.2. Wavelet-based adaptive integration

We now propose a wavelet-based technique to handle the difficulties associated with the classical time step-
ping schemes in the previous section. In contrast to time marching, where a sequence of discrete algebraic sub-
problems are solved, we propose to reduce the PDE to a single algebraic problem in the entire time domain
[0, T]. Thus, to develop an AWCM integration technique for solving Eq. (15), we consider a pseudo boundary
value problem in [0, T] with a Dirichlet condition at t = 0 and a suitable terminal condition at t = T. Since the
problem (15) is well-posed (i.e. its solution is uniquely determined from the available boundary data), adding a
terminal condition makes the problem overdetermined. However, the numerical method needs information to
correctly evolve the solution at the t = T boundary from the initial data given on the t = 0 boundary. The cor-
rect procedure is to determine the value of the wavelet coefficients at the t = T boundary using nearest neigh-

bours such that the gradient of the solution is properly calculated at t = T. This ensures that the solution
u(x, T) is determined from u(x, t < T). We call the constructed problem a pseudo boundary value problem
because the proposed terminal condition
du
dt
ðT Þ �Fðu; T Þ ¼ 0 ð17Þ
is a dynamic condition at t = T, which we call an evolution condition. This boundary condition does not make
the problem overdetermined and is not necessary for the existence or uniqueness of the solution. This is in
contrast to the artificial or numerical boundary conditions that are sometimes used to determine the interior
solution in a hyperbolic system [63].

Consider second generation bi-orthogonal wavelets on dyadic grids of [0, T], i.e. tj
k ¼ 2�jk for all j P 0. Let

Nj + 1 be a total number of grid points on level j. We now expand u(t) and du/dt in multi-scale wavelet basis at
scale 2�j to get the following:
uðtj
0Þ ¼ u0ðtj

0Þ ðleft boundaryÞ;
du
dt
ðtj

kÞ �Fðuðtj
kÞ; t

j
kÞ ¼ 0; 1 6 k 6 N j � 1 ðinternal pointsÞ;

du
dt
ðtj

kÞ �Fðuðtj
kÞ; t

j
kÞ ¼ 0; k ¼ N j ðright boundaryÞ.
Since we are using a collocation-based weighted residual approximation of functions in wavelet basis, the
derivatives of u(t) at each of the collocation points tj

k are computed from the approximation of u(t) according
to some discretization stencil (explained later). Using Eq. (9), the above system of difference equation thus
reduces to the following algebraic problem:
LjU j ¼ F j; ð18Þ
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where Fj and Uj are (Nj + 1) · 1 vectors and Lj is an (Nj + 1) · (Nj + 1) matrix. The entries of the matrix Lj

depends on the function F such that
LjU j ¼
uðtj

kÞ for k ¼ 0;
du
dt ðt

j
kÞ �Fðuðtj

kÞ; t
j
kÞ for 1 6 k 6 N j � 1;

du
dt ðt

j
kÞ �Fðuðtj

kÞ; t
j
kÞ for k ¼ Nj;

8><
>:
and the entries of the vector Fj are given by
F j ¼
u0ðtj

kÞ for k ¼ 0;

0 for 1 6 k 6 N j � 1;

0 for k ¼ Nj.

8><
>:
The solution of the nonlinear algebraic problem (18) gives the approximate solution uðtj
kÞ of the initial value

problem (15) at each tj
k ¼ 2�jk. The main advantages of this approach are the following:

� Global error control. Since u(t) is approximated in the whole time interval [0, T], the approximation error is
bounded globally by the wavelet thresholding parameter according to Eq. (11).
� Natural time stepping. Time steps can be adapted easily to the natural time scale of each of the components

of u 2 Rn since the expansion coefficients dj
k �s are large if the solution is temporally intermittent. The imple-

mentation of natural time adaptation is a recursive process and is similar to that described by Vasilyev and
Kevlahan [46] for the elliptic case.
� Reduced computational complexity. In second generation wavelet discretization, the entries of the matrix Lj

do not need to be computed explicitly. The entries of the vector LjUj are computed directly in OðNÞ oper-
ations, where N is the number of the active degrees of freedom (independent of the dimensionality of the
problem). Thus, the computational cost of obtaining the global algebraic problem does not exceed OðNÞ.
More details on this estimate are given in [46]. The multi-scale wavelet decomposition provides a natural
frame work to construct the algebraic problem (18) on nested dyadic grids of [0, T]. Thus, a multi-grid strat-
egy (discussed later) is a natural choice to solve the algebraic problem, which is optimal in solving algebraic
problems.

Thus, in contrast to the classical approach, where a sequence of algebraic problems is solved, we construct a
single algebraic problem that can be solved optimally using a multi-resolution (multi-grid) strategy.

3.3. Simultaneous space–time pseudo boundary value problem

Vasilyev and Kevlahan [46] developed a multi-level AWCM to solve elliptic partial differential equations.
We have described the adaptive wavelet decomposition technique in Section 2, and presented a wavelet-based
adaptive time integration technique in Section 3.2. In this subsection, we describe how to extend this wavelet-
based adaptive integration technique to solve a nonlinear time-dependent partial differential equation. Since
the algorithm is similar to the multi-level elliptic-AWCM described in [46], we only discuss the differences and
mathematical aspects here. Interested readers who need a more details of the adaptive wavelet collocation
method should refer to the work of Vasilyev and Bowman [34] and Vasilyev [35] [and the references therein].

To make the time dependence explicit in (1), we split the partial differential operator L,
Lu 	 ou
ot
þHu ¼ f ; ð19Þ
where we now assume that u(x, t) is a function that depends on one spatial variable x, and H is an operator
that consists of partial derivatives with respect to x only. For simplicity, we consider the case of one spatial
dimension. Extension of this method to multiple spatial dimensions is straightforward in principle, but re-
quires more care in implementation to ensure computational efficiency (e.g. improving the data structure
and parallelizing the algorithm). In order to solve Eq. (19) in the space–time domain [�1, 1] · [0, T], we use
the following boundary conditions:
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B�u ¼ g� for x ¼ �1; t 2 ð0; T Þ; ð20Þ
Bþu ¼ gþ for x ¼ 1; t 2 ð0; T Þ; ð21Þ
uðx; 0Þ ¼ u0ðxÞ for x 2 ½�1; 1�; t ¼ 0; ð22Þ
where the operators B
 can be specified to impose Dirichlet, Neumann, mixed, or periodic boundary condi-
tions. While Eqs. (19)–(22) define an initial-boundary value problem that can be solved uniquely, we are inter-
ested here in constructing a (pseudo) boundary value problem in the space–time domain. For this purpose, as
mentioned previously, we propose an evolution condition at t = T:
ou
ot
ðx; T Þ þHuðx; T Þ ¼ f ðx; T Þ. ð23Þ
If this boundary condition is added to the initial-boundary value problem defined by Eqs. (19)–(22), we can
construct a boundary value problem in the space–time domain, without overdetermining the problem [64].

3.4. Discretization of a general boundary value problem

We have seen that the boundary value problem given by Eqs. (1) and (2) can be used to represent an initial
value problem or an initial-boundary value problem with the proper choice of the operator L, the domain X,
and an evolution condition at the long time boundary t = T. The procedure for approximating any function
and its derivatives described in Section 2 can now be applied to discretize the general boundary value problem
(1). Let us construct a tensor product space–time dyadic grid Gj of X :¼ I � R� ð0; T Þ at level j. An example
of a space–time dyadic grid is shown in Fig. 1. The partial differential operator L :¼ o

ot þHðox; oxx; . . .Þ is
approximated on each of the filled points in the space–time grid. This is supplemented by the approximation
of the associated boundary conditions on each of the non-filled points.

Let U j ¼ ½uðxj
k; t

j
nÞ�

T be the one-dimensional vector containing the adaptive points of the nodal approxima-
tions of u(x, t) at level j. In a collocation method, the derivative of u(x, t) at t ¼ tj

n; x ¼ xj
k is computed using the

values of u(x, t) at some neighboring grid points according to a discretization stencil. An example of a discret-
ization stencil for a low-order approximation of the derivative, when L :¼ ot � moxx, is presented in Fig. 2,
which corresponds to a uniform mesh. In practice, we compute derivatives on simultaneous space–time adap-
tive grid with higher order accuracy [34]. It is easy to show that second generation wavelet collocation discret-
ization of temporal and spatial derivatives in the space–time domain along with the discretized boundary
conditions reduces the problem to a system of algebraic equations
LjU j ¼ F j; ð24Þ

where Lj is a N�N matrix, Uj is a N� 1 vector containing nodal values, Fj is a N� 1 vector that repre-
sents the source of the problem, and N is the total number of adaptive points on a space–time computational
grid. The entries of LjUj are computed in a similar way as in Eq. (18). The construction of this algebraic prob-
lem costs only OðNÞ operations and the matrix Lj is never multiplied by the vector Uj explicitly. Therefore,
any initial value problem may be reduced to a single (large) algebraic problem.
j=1 j =2

An example of space–time dyadic grid at levels j = 1 and j = 2, where the horizontal and vertical axes corresponds to the space and
irections respectively, and filled or non-filled circles indicate if a point belongs to the interior or the boundary of the space–time
n respectively.



a b

Fig. 2. (a) Explicit stencil. (b) Implicit stencil of discretization, where the horizontal direction corresponds to space and the vertical
direction corresponds to time. The non-filled point corresponds to the location of wavelet where the equation is approximated, and the
filled points are the nearest neighbors.
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As noted earlier, since the time marching technique updates the solution for a fixed time, local truncation
error increases at each time step. If the accumulated error is bounded above by some exponential function of
time, then the numerical scheme is called stable [65]. However, if simultaneous space–time discretization is
used, then the entire space–time mesh is solved at once and can be used by an error estimator to iteratively
compute a new adapted space–time mesh. With this approach, the wavelet coefficients measure the local fluc-
tuation of the solution simultaneously in space and time, and provide global control of the of both spatial and
temporal error.
3.5. Implementation of the boundary conditions

In the collocation approach, implementation of general boundary conditions is straightforward. The given
differential equation is approximated only for those collocation points that do not belong to the boundary,
and the boundary conditions are approximated only at those collocation points that belong to the boundary.
The algebraic problem (24) consists of the discretized PDE supplemented by the discrete approximation of the
boundary conditions, which constitute an algebraic system, where the number of equations equals the number
of unknowns.
3.6. Nonlinear multi-level adaptive solver

We have demonstrated a new procedure of numerically solving ordinary or partial differential equations
using the AWCM. Our method constructs a single algebraic problem in the whole space–time domain. If
the function F in Eq. (15), or the partial differential operator H in Eq. (19) is nonlinear, the algebraic prob-
lem (24) is also nonlinear. We now explain how to extend the AWCM multi-level solver developed in [46] to
nonlinear problems.

One way of extending the AWCM multi-level solver to nonlinear problems is to use Newton�s method. This
produces a linear equation for the correction term at each iteration, one can then use the AWCM multi-level
solver to solve this linear equation. However, this does not take full advantage of the multi-grid approach. The
linear error equation is a local correction to the solution, and thus does not significantly influence the global
rate of residual reduction. A more detailed discussion, with numerical examples of elliptic problem, can be
found in [66]. The multi-level structure of the wavelet approximation gives us a natural frame-work to estab-
lish a wavelet-based full approximation scheme (WFAS), based on the concept of the full approximation
scheme (FAS), which was originally developed for multi-grid methods by Brandt [8,67,68]. Multi-grid meth-
ods are very similar to AWCM in the sense that they both represent the solution on a nested sequence of grids.
Previous research has shown how the FAS can be incorporated into multi-grid schemes [8,66,69–72]. Here the
main difference is that the fast adaptive second generation lifted interpolating wavelet transform is used for
both recursive prolongation and restriction on a grid that adapts to the solution after each V-cycle iteration.

Let us take Eq. (24) to be the fine grid problem at level J and ~U
J

to be an approximate solution of the fine
grid problem. Let RJ be the wavelet restriction operator defined by
UJ�1 ¼ RJ�1U J ;
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and let
rJ :¼ F J � LJ ~U
J ð25Þ
be the residual of the approximate solution at level J. A two level approach aims to compute a correction V (usu-
ally called coarse grid correction) to the approximate solution ~U

J
by solving the problem (coarse grid problem)
LJ�1UJ�1 ¼ LJ�1ðRJ�1 ~U
J Þ þRJ�1rJ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

F J�1

; ð26Þ
which is defined on the coarse grid. The coarse grid correction V is obtained by prolonging the estimated error
on the coarse grid as
V  RJ ð ~UJ�1 �RJ�1 ~U
J Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

coarse grid error

. ð27Þ
The solution at level J is thus updated by
U J  ~U
J þRJ ð ~U J�1 �RJ�1 ~U

J Þ. ð28Þ

Thus, we need to restrict both the residual and the solution from fine grid to coarse grid. This is in contrast to
the linear case, where only the residual is restricted [69].

An iterative method for solving a system of algebraic equations is called a relaxation technique if the high
frequency components of error are reduced rapidly in a few iterations [70]. The general multi-grid strategy
relies on the idea that the solution is relaxed at the fine scales. Since the smooth components of error appear
to be non-smooth on coarser scale, recursive restriction of smooth error to coarser and coarser scale is carried
out to reach the coarsest scale where the error of approximation is computed. A recursive prolongation pro-
cedure propagates coarse grid error to finer and finer grids. Finally, the fine grid approximation is updated to
get the next iterate. One cycle from finest grid to coarsest grid and from coarsest grid to finest grid is called a
multi-grid V-cycle iteration [69]. At each step of V-cycle restriction and prolongation, a suitable relaxation
scheme is used to smooth out the high frequency component of the error.

The main difference between the linear V-cycle and the nonlinear V-cycle is that both the fine grid residual
and the fine grid approximation are restricted to coarser grid. We have implemented a Newton smoother for
the nonlinear Burgers equation, which is computationally more efficient because the Jacobian matrix is neither
computed explicitly nor multiplied by any solution vector explicitly. A locally linearized operator is discretized
to solve for the correction term in the Newton iteration. Vasilyev and Kevlahan [46] introduced the AWCM
multi-level solver for elliptic problems, and showed how it differs from the classical linear elliptic multi-grid
solver. Note that the AWCM elliptic solver and the space–time WFAS solver both solve PDEs on a near opti-
mal grid such that the global error is controlled by the a priori tolerance. Conventional linear multi-grid solver
and nonlinear FAS solver invert elliptic operators with reduced computational cost such that the global error
is reduced depending on how fine the finest grid is. These methods start with a given fine grid and perform
most of the computational work in coarser grids [73]. In contrast, our method starts with a coarser grid
and, given an error tolerance, seeks an accurate solution on a near optimal refined grid. A detailed discussion
of different smoothing strategies is beyond the scope of the present paper, where we are mainly interested on
global error control and multiple time stepping.

3.6.1. Smoothing in the simultaneous space–time domain
We now briefly outline how the approximate solution to a given equation is relaxed in a simultaneous

space–time domain. Let us re-write Eq. (24) for fixed resolution 2�J as
fðuÞ ¼ 0; ð29Þ

where u = UJ is the solution vector for a given J and f is a N� 1 vector. Let v denotes the error at scale 2�J.
One can determine v by solving the following linear equation:
JðuÞv ¼ �fðuÞ;
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where J is the Jacobian of f. The correction u u + v constitutes one step of Newton�s iteration and the
smoothing strategy is described in Algorithm 1 in terms of Eq. (24). Note that the method converges quadrat-
ically if provided with a �good� initial guess. However, the computational cost of the error equation is larger
than the overall computational cost of the AWCM (which is OðNÞ). This is clearly not efficient.

To improve the efficiency of the method, we introduce an alternate approach that requires only OðNÞ com-
putations to obtain the error equation, where we linearize the original PDE about an approximate solution. As
an example, consider uk to be an approximate solution of Burgers equation,
ou
ot
þ u

ou
ox
� m

o2u
ox2
¼ 0;
which can be updated as uk uk + v by solving
ov
ot
þ u

ov
ox
þ v

ou
ox
� m

o2v
ox2
¼ �f ðuÞ
for v. We now discretize this equation to produce JðuÞv ¼ �fðuÞ. Thus the computational cost for the Jaco-
bian equation remains the same as that of the wavelet transform. To complete the smoothing stage at each
level of resolution, we perform 3 sweeps of weighted Jacobi iteration to compute v, which is than followed
by another 3 sweeps of Newton iteration to update u.

Algorithm 1. Adaptive WFAS V-cycle iteration

WHILE iFJ�LJUJi2 P d

rJ:¼FJ�LJUJ

for j = J:1:�1
DO m1 steps of smoothing
RESTRICT solution and residual

end

Solve LjUj = Fj for j = jmin

for j = 1:J:1
ESTIMATE coarse grid error
PROLONG error to fine grid
DO m2 steps of smoothing

end

UPDATE solution UJ UJ + V

end

Although this approach works with reasonable efficiency with the fast lifted interpolated wavelet transform,
difficulties arise if the nonlinear term has the form of gðuÞ ou

ox, where the explicit form of g(u) is not known. This
is the case in solving the vorticity form of the Navier–Stokes equation. In order to mitigate this difficulty, and
reduce the computational effort due to the inversion of the Jacobian, let us solve each of the equations in the
system (29) for separate components of u. In other words, we propose to solve ith nonlinear equation for ith
component of u using Newton�s method. A given ui is now updated by a few sweeps of
ui  ui �
fið½. . . ui . . .�Þ

ofi=oui
; ð30Þ
where the second term in Eq. (30) can be thought as a local correction to each of the components of u. In order
to synchronize this local correction, we can incorporate this in Algorithm 2 by replacing the Jacobian with the
diagonal matrix,
JðuÞ :¼ diag
ofi

oui

� �
.
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We have examined this technique (i.e. replacing the smoother in the WFAS algorithm by the solution of a
nonlinear elliptic equation), and noticed that only one Newton�s sweep in (30) is sufficient for convergence.
In fact, for the linear case the method reduces to Jacobi iteration.

The WFAS strategy for nonlinearities is outlined in Algorithm 1, while the smoothing technique is outlined
in Algorithm 2.

Algorithm 2. Adaptive Newton smoother. J is the Jacobian.

Given an initial guess UJ

DO m1 steps

Solve JðUJ ÞV ¼ �F ðU JÞ :¼ F J � LJ UJ

Correct UJ UJ + V

end
3.7. Construction of adaptive space–time grid

In the finite element approach, an adaptive grid is constructed by refining and coarsening according to a
posteriori local error indicators [20]. Mesh refinement in wavelet-based techniques is somewhat different.
The multi-level structure of wavelet decomposition provides a natural framework for mesh coarsening and
refinement, and grid adaptation is automatic [34]. A wavelet coefficient dj

k, by measuring the local fluctuation
of a function in the neighborhood of a collocation point xj

k, acts as a local error estimator. As described earlier,
the error-balancing grid adaptation strategy aims to find the best representation of a function (e.g. lowest L2

norm error) for a given number of grid points N. This is called an optimal N-term approximation to the
function. In the proposed method, an optimal N-term to a parabolic PDE is sought in the whole space–time
domain such that the L2 norm residual error is less than a specified tolerance.

The method starts with a suitable initial space–time grid Gj and an initial guess for the solution of Eq. (1),
which incorporates the Dirichlet boundary values. When j is small and the solution is intermittent the residual
iu � uji2 is large, but it decreases as j!1. We now aim to find the smallest possible Gjþ1 � Gj such that
iu � uj+1i2 = aiu � uji2, where a 2 (0, 1). The properties of the wavelet coefficients dj

k guarantee that there
exists a J such that GJþ1 ¼ GJ contains the minimal set of N points [19]. On this grid, we obtain the best
N-term approximation for the given tolerance. Since the wavelets are located simultaneously in both space
and time, the number of degrees of freedom N is also minimized in space and time and the global error is
estimated by the magnitude of the smallest wavelet coefficients retained. Thus, accuracy is controlled not
by the range of the wavelet spectrum (i.e. range of scales j), but rather by the intensity of the spectrum. This
is in contrast to the spectral method where the accuracy is increased by increasing the range of the resolved
spectrum (i.e. adding larger wavenumbers). For more technical details of constructing the optimal adaptive
wavelet grid, we refer the readers to [46, and the references therein].

3.8. Flip and solve method

When the actual computational time interval is very large, the size of the algebraic problem on the space–
time domain can exceed the available computer memory. To overcome this technical limitation, we propose to
decompose the space–time domain into a collection of sub-domains in the time direction. Let us partition the
interval
ð0; T Þ ¼
[n¼N�1

n¼1

ðT n; T nþ1Þ with T 1 ¼ 0; T N ¼ T . ð31Þ
Thus, the space–time domain X = (�1, 1) · (0, T) can be decomposed into a collection of sub-domains as
X :¼
[n¼N�1

n¼1

ð�1; 1Þ � ðT n; T nþ1Þ. ð32Þ
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Let Xn = (�1, 1) · (Tn, Tn+1). A schematic diagram of this sub-division is shown in Fig. 3. Thus, the problem in
X can be solved as a sequence of sub-problems in each of the domains Xn, n = 1. . .N � 1. In other words, we
solve a problem Pn in domain Xn with boundary condition at t = Tn as Dirichlet type and at t = Tn+1 as evo-
lution type. For fixed n, to solve a problem Pn in Xn, Dirichlet boundary values at t = tn are known from the
solution of problem Pn�1. Since the boundary t = Tn (with a non-uniform adapted grid) is common to domains
Xn and Xn�1, we can flip the domain Xn and the problem Pn over Xn�1 and Pn�1 respectively. Thus, solving the
problem Pn in domain Xn is equivalent to solving a new flipped problem P 0n�1 in Xn�1. To this end we call Pn as
forward problem and P 0n�1 as backward problem. By proceeding in the same way, we can flip and put all the
sub-domains over the domain X1. This allows us to construct a sequence of problems on X1 corresponding
to each of the sub-domains. Note that we still retain global error control over the entire domain X.

In this construction the PDE remains forward if the orientation of the corresponding domain is unchanged,
and a problem changes to backward if the corresponding domain is flipped.

Let us now call a problem is backward if we change the direction of t, consider the given spatial boundary
conditions and switch the boundary conditions at t = T1 with that at t = T2. Once the actual problem is solved
in X1, we flip the problem, take the computed solution at t = T2 as initial condition and leave the boundary at
t = T1 as evolution type. The solution of the flipped problem in X1 is now the solution of the actual problem in
X2. The process is continued until the desired maximum T is achieved.

The flip-and-solve technique resolves the difficulty associated with the available computer memory (when
the total space–time degrees of freedom is too large) by solving a sequence of space–time problems. This is a
technical implementation of the proposed space–time AWCM and does not affect the convergence of the algo-
rithm. It is apparent that the terminal solution in the first space–time grid is used as the initial condition in the
second space–time grid. This injects an error of O(�) in the increasing time direction. However, since the error
in the multi-level adaptive wavelet approximation is controlled by the same wavelet thresholding parameter �
[61], this injected error remains local and does not accumulate globally. This has been verified by numerical
experiments.

4. Results and discussion

4.1. Model problems

The accuracy and efficiency of the proposed numerical method is now verified by solving nonlinear para-
bolic PDEs with highly intermittent solutions. Since our ultimate goal is the study of high Reynolds number
turbulent flows, we will consider three simplified problems that capture the main features of turbulence
Ω1

Ω2

Ω3

t = T

x = –1

t = 0
x = 1

Fig. 3. Schematic diagram of the space–time domain and sub-domains.
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dynamics. We first consider two related one-dimensional problems: the one-dimensional model of the Navier–
Stokes equations known as Burgers equation [74] with fixed and moving shocks. These one-dimensional prob-
lems (solved on a (1D + t) dimensional space–time domain) allow us to carefully evaluate the performance of
the space–time algorithm. We are particularly interested in grid adaptation (e.g. local time step) and global
error control in the space–time domain. We then analyze a much more realistic problem: the merger of two
identical vortices at Re = 1000 calculated by solving the two-dimensional vorticity equations on a three-
dimensional space–time domain. This problem shows that the space–time method performs well in higher
dimensions on problems with more complex dynamics.

4.2. Problem formulation

4.2.1. Fixed shock
To examine the delicate balance between the nonlinear advection and the diffusion, we consider the bound-

ary value problem for Burgers equation with periodic boundary condition in space (x-periodic), a smooth initial
profile, and an evolution condition for the final time. The proposed forward and backward problems (notation
explained in Section 3.8 are described below:

Forward problem. We construct a space–time forward boundary-value problem by considering long-time
boundary as evolution type:
� m
o

2u
ox2
ðx; tÞ þ uðx; tÞ ou

ox
ðx; tÞ þ ou

ot
ðx; tÞ ¼ 0;

uð�1; tÞ ¼ uð1; tÞ; t 2 ð0; T Þ;
uðx; 0Þ ¼ sinðpxÞ; x 2 ð�1; 1Þ

� m
o

2u
ox2
ðx; T Þ þ uðx; tÞ ou

ox
ðx; T Þ þ ou

ot
ðx; T Þ ¼ 0.

ð33Þ
Let us call this solution u1(x, t) in the first space–time grid [�1, 1] · [0, T]. The solution u2(x, t) in the second
space–time grid [�1, 1] · [T, 2T] is obtained by solving the following backward problem.

Backward problem. We now construct a space–time backward boundary-value problem:
� m
o2u
ox2
ðx; tÞ þ uðx; tÞ ou

ox
ðx; tÞ � ou

ot
ðx; tÞ ¼ 0;

uð�1; tÞ ¼ uð1; tÞ; t 2 ð0; T Þ;
uðx; T Þ ¼ u1ðx; T Þ; x 2 ð�1; 1Þ;

� m
o2u
ox2
ðx; 0Þ þ uðx; tÞ ou

ox
ðx; 0Þ � ou

ot
ðx; 0Þ ¼ 0.
The solution of the forward problem has a fixed shock that steepens as t increases with vanishing viscosity.
Even with a relatively large viscosity considered here, m = 10�3/p, the change from a uniformly smooth distri-
bution to the shock structure is observed as early as 0 6 t 6 1/p. This, in turn, results in the growth of the
wavelet coefficients near x = 0 as t increases. Note that in order to resolve the shock structure we need to com-
pute the solution up to scale J such that [26]
2�J
6 ½ou=ox��1. ð34Þ
In the above formulation, we consider the final time T = 0.4, which is sufficient for smooth initial condition to
become highly intermittent.

The exact solution of the forward problem can be determined easily using the so-called Cole–Hopf trans-
formation [75] and is given by
uexðx; tÞ ¼ �

Rþ1
�1 sinðpðx� gÞÞ exp � cosðpðx�gÞÞ

2pm

� �
exp � g2

4mt

� �
dgRþ1

�1 exp � cosðpðx�gÞÞ
2pm

� �
exp � g2

4mt

� �
dg

. ð35Þ
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The exact solution uex(x, t) plotted in Fig. 4 shows that Burgers equation develops a very intermittent solution
in both space and time. The time scale is fastest where the gradient steepens.

4.2.2. Moving shock
We now study a problem where a localized structure (e.g. a shock) moves. By adding a constant speed to

the inertial term of the Burgers equation with a shock type initial condition, we can construct a problem whose
solution contains a shock that does not change in time, but moves in space according to the added constant
speed. Although the mathematical construction of this problem is similar to the previous problem, additional
numerical difficulties appear when an adaptive numerical method is used. The spatial grid should now refine
and coarsen to follow the shock structure. In classical adaptive numerical methods, a moving mesh approach
is the popular choice in this case [76]. In other words, a pre-calculated non-uniform grid is translated in order
to follow the moving shock. In our case, the space–time grid adapts iteratively and automatically to resolve the
fine scale structure in space and time.

Forward problem
� m
o2u
ox2
þ ðvþ uÞ ou

ox
þ ou

ot
¼ 0; ðx; tÞ 2 ð�1; 1Þ � ð0; T Þ;

uð
1; tÞ ¼ �1;

uðx; 0Þ ¼ � tanh
x� x0

2m

� �
;

� m
o

2u
ox2
þ ðvþ uÞ ou

ox
þ ou

ot
¼ 0; t ¼ T ;

ð36Þ
Backward problem
� m
o2u
ox2
þ ðvþ uÞ ou

ox
� ou

ot
¼ 0; ðx; tÞ 2 ð�1; 1Þ � ð0; T Þ;

uð
1; tÞ ¼ �1;

� m
o

2u
ox2
þ ðvþ uÞ ou

ox
þ ou

ot
¼ 0; t ¼ 0;

uðx; T Þ ¼ u1ðx; T Þ.

ð37Þ
We solve this problem for m = 10�2, x0 = 0, v = 1, and T = 0.4.
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Fig. 4. Exact solution of the Burgers equation at different values of t.
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4.2.3. Vortex merging in 2D turbulence

The space–time AWCM is applied here to study vortex merging, which is known to be a fundamental non-
linear process in two-dimensional turbulence [43]. We solve the two-dimensional Navier–Stokes equation writ-
ten in the velocity–vorticity form,
ox
ot
þ u  rx� 1

Re
r2x ¼ 0 in X. ð38Þ
In two-dimensional flow, the vorticity is confined to the z-direction, and is related to the velocity field via
r� u ¼ x.
One can show that the velocity is a functional of vorticity, given by the Biot–Savart law,
uðx; tÞ ¼ � 1

2p

Z
x� y

jx� yj2
� xðy; tÞdy; t 2 ½0; T �; ð39Þ
where the integral is taken over the entire spatial domain [77,78]. Greengard and Rokhlin [79,80] have devel-
oped a Fast Multiple Method (FMM) that we use here to evaluate the above integral such that the velocity
field is computed from the vorticity field throughout the space–time domain.

The initial condition is two identical Gaussian vortices with vorticity given by
xðx; y; 0Þ ¼ C
pr2

exp½�ððx� r cos /Þ2 þ ðy � r sin /Þ2Þ=r2�;
where the circulation C = 1, the vortex radius r ¼
ffiffiffiffiffiffiffi
mp2
p

, the vortex separation 2r = 1, and the vortex centres
are located at angles / = ±p/4. The Reynolds number is Re = C/m = 1000. This Reynolds number is high
enough that the merging process generates intense intermittent vorticity in the form of filaments.

The space–time domain X is the product of a doubly periodic spatial domain D = [�2.5, 2.5] · [�2.5, 2.5]
and the time interval [0, 40]. As for the other cases, we use an evolution condition at the final time boundary.
We construct a space–time grid with subdomains of size DT = 0.4, and solve the problem recursively using the
flip-and-solve algorithm discussed earlier. In the absence of an exact solution, we verify the performance of the
numerical method by comparing it to similar AWCM which uses a classical time marching scheme [47].

4.3. Results for Burgers equation

4.3.1. Progressive grid adaptation and reduction of error

The ability of the numerical method to adapt the computational grid progressively is tested by setting the
threshold parameter � to some nonzero value, and solving the problem on a suitable initial coarse grid. As
described in [46], the initial grid is refined iteratively by analyzing the wavelet coefficients and retaining only
those whose values are larger than �, along with a �security zone� of nearest neighbor wavelets in position and
scale. Wavelet coefficients are added where the solution has strong gradients (i.e. small space scales and fast
time scales). This iterative procedure produces a sequence of grids and a sequence of solution surfaces, where
the number of grid points increases at each iteration. Since the wavelet coefficients dj

k vanish as the scale
decreases for fixed position, after enough iterations the number of grid points and maximum scale J no longer
increase. This means that the sequence of grids, and associated solution, has converged.

The smallest resolved scale in our computation is controlled by the threshold parameter �. More impor-
tantly, in an error control based adaptive method the tolerance and the maximum number of grid points
are fixed [2]. In other words, prescribing the tolerance � also prescribes the smallest resolved scale. Thus, pro-
gressive grid adaptation procedure continues adding smaller and smaller scales until it finally reaches a steady
state where the level of multi-resolution and number of active points do not change. To show that the number
of degrees of freedom in a near optimal grid is fixed for a given tolerance, the scale as a function of iteration
and the corresponding number of active wavelets as a function of iteration are plotted in Fig. 5 for the devel-
oping shock and in Fig. 6 for the moving shock.

In order to visualize the progressive grid adaptation, we perform simulations with an error tolerance
of � = 10�5 without fixing the maximum allowable resolution. Due to the presence of localized structures,
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an initial space–time grid that is relatively coarse compared to the smallest active scale is refined progressively
and grid points accumulate near the singularity. We present simultaneous space–time adaptive grids at various
scales j with � = 10�5 in Fig. 7(b). The accumulation of grid points in the region of intermittency and the non-
uniformity of the time step in space shows the efficiency of the method.

Due to the presence of localized structures, large scale computations have large errors while the error
decreases with scale. To show the progressive decrease of error with scale, we plot in Fig. 7(a) the solution
at t = 0 and at t = 0.4 in various scales respectively for the developing shock. The solution and grid at the
finest scale are shown in Fig. 8 for moving shock.

4.3.2. Global error control

One can easily show that the classical time marching procedure accumulates error progressively as time
increases. To reduce the globally accumulated error, one reduces the time steps. Since the reduction in the time
step is limited by machine precision, there is no control on the global error accumulation for arbitrarily long
times. Analytical results shows that the global error in the domain where the wavelet transform is performed is
bounded by the threshold parameter � [34,46]. Thus, a wavelet-based simultaneous space–time adaptive
method does not allow error to increase without bound. To test this, we compute the evolution of the Lp norm
of the error E(t) := {�xju(x, t) � uex(x, t)jpdx}1/p, and present the result with p =1 (i.e. the maximum error).
In the developing shock problem, the sharp transition at fixed position reaches a maximum at some time tc,
and is then smoothed by viscous forces. Thus, as pointed out by Vasilyev et al. [26], the error should be high in
the neighborhood of maximum gradient as the solution is computed from the best N term approximation
determined by the wavelet coefficients. This is seen in the temporal evolution of error in both of the problems
(see Fig. 9(a) and (b)).

As mentioned earlier, to efficiently use the available computer memory we implement a �flip-and-solve� tech-
nique when the time interval is very large (Section 3.8). Note that the global error retains the same bound if we
use the �flip-and-solve� technique or use the entire domain. To show this we solve the developing shock prob-
lem by dividing the space–time domain [�1, 1] · [0, 0.4] into two equal sub-domains. The forward problem is
solved in sub-domain [�1, 1] · [0, 0.2], and the backward problem is solved in the sub-domain
[�1, 1] · [0.2, 0.4]. In Figs. 10 and 11, we present the evolution of error in each of the domain as well as
the corresponding space–time grid. Clearly, the method retains the same accuracy and a similar grid. Thus,
we can use this algorithm to solve problems that must be integrated for arbitrarily long times. The compres-
sion of the grid in the flip-and-solve technique is qualitatively the same if we compare Figs. 10(a) and 11(a)
with the bottom of Fig. 7(b).

To further analyze spurious globally accumulated error, we now solve the developing shock problem using
a standard pseudo-spectral approach with de-aliasing, where the time marching scheme is a hybridization of a
third-order Runge–Kutta for the nonlinear term and a Crank–Nicholson scheme for the linear viscous term.
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developing shock problem as the adaptive grid iteration proceeds.
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Although, there is no a priori estimates for the globally accumulated error in a spectral time marching scheme,
we expect that the leading order behavior of the global error is dominated by the temporal truncation error in
the Crank–Nicholson scheme which is second order in time. Thus, if Dx � Dt = O(10�3) then after marching
100 time steps, we expect that the error should accumulate at least to O(10�4), or higher, since there are other
sources of error. This accumulation of error is demonstrated in Fig. 12(a) where we compare the growth of L1

error in various time marching schemes (with fixed time step) to the space–time method. The error increases
monotonically in time until about t = 0.3 in all the time marching schemes, while in the space–time method the
error is controlled by wavelet thresholding parameter � = 10�5. Fig. 12(b) shows that the error of the time
marching schemes varies significantly with position, and is largest where the gradient of the solution is stron-
gest (i.e. near x = 0). In contrast, the error of the space–time method is relatively homogeneous in space. The
accumulation of error in the time marching methods could be slowed by using an adaptive time step, but it can
never be eliminated entirely.

4.3.3. Accuracy and efficiency of the method

Eq. (13) predicts that increasing the number of grid points will decrease the global error by a factor of p/n,
where n is the dimension of wavelet transform (n = 2 in this case) and p is the number of vanishing moment of
the wavelet. Since n is fixed, increasing p decreases the error. On the other hand, decreasing � increases the
number of grid points (12), and thus reduces the error. Hence the best approximation of the solution is con-
trolled by the parameters p, �. To measure the accuracy of the proposed numerical method, we compute Eqs.
(12) and (13) numerically for the fixed and moving shock problems for values of p = 4,6,8. As expected,
increasing p improves the accuracy of the method. In Fig. 13, we present numerical results which agree with
the theoretical predictions in Eqs. (12) and (13).

The asymptotic global error is given in terms of the threshold parameter � by Eqs. (12) and (13). We present
numerical results to verify the asymptotic error estimates [46] given by Eq. (13) in Fig. 13(a), where the point-
wise L1 norm of the error in simulations with tolerance � = 10�5 is plotted for p = 4, 6, 8. In Fig. 13(b), we
present the effect of thresholding on the number of active collocation points as predicted by Eq. (12). This
shows that the numerical method converges with sufficient accuracy, as predicted by the analytical error
estimates.

4.4. Results for vortex merging

We now present numerical results for merger of two Gaussian vortices. The initial conditions and the com-
putational domain are described in Section 4.2.3. The algorithm refines or coarsens the spatial mesh and the
time step by the same factor, i.e. if Dx is changed to Dx/2 then Dt is changed to Dt/2. We therefore start with
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an initial coarse mesh with sufficient spatial resolution to resolve the initial condition and such that Dt/
Dx � min(juj�1), where u is the velocity field. This CFL-type condition is not a strict requirement for conver-
gence, and is only necessary to ensure that the grid resolution in space and time is optimal. One could, in prin-
ciple, start with a 2 · 2 · 2 mesh and refines the spatial domain such that an acceptable ratio of the refinement
factor between x and t is obtained, which is the same as having a fixed ratio between Dx and Dt. Since no
information is available for t > 0 at this moment, simply adapting the space–time mesh to the initial condition
is not appropriate. Moreover, the CFL-type criterion is reasonable for the simulation of advection dominated
flows.

In this simulation we use an initial space–time grid of size 32 · 32 · 2 (see Fig. 16(a)). We allow three levels of
grid refinement, which means the maximum resolution in any sub-domain of size [�2.5, 2.5] · [�2.5, 2.5] ·
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[0, 0.4] is 256 · 256 · 16. The wavelet thresholding parameter � = 10�5. Fig. 16(b) is the space–time grid of the
first space–time sub-domain in the flip-and-solve algorithm, and Fig. 16(c) is the grid of the last space–time
sub-domain. This result shows that the time steps are local and distributed according to the temporal intermit-
tency of the solution. To the best of our knowledge, this is the first two-dimensional DNS of the vorticity or
Navier–Stokes equations that adapts the time step to match the natural local time scale.
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Note that the vortex merging simulation is significantly different from the two previous problems because of
the need to resolve both the velocity and vorticity field in the space–time domain. The evolution of the vor-
ticity field is determined by solving the vorticity equation in simultaneous space–time domain and by perform-
ing the FMM calculation at each V-cycle Wavelet-based Full Approximation Scheme (WFAS) to find the
velocity, which is then used for next V-cycle iteration. Once the WFAS calculations have converged, we
use this solution to estimate the error and to adapt the space–time grid according to the algorithm described
by Vasilyev and Kevlahan [46].

We have compared the space–time results with the results of similar AWCMs which use adaptive wavelets
for spatial discretization and an adaptive time marching scheme in the temporal direction [47]. We consider
two time marching schemes: an explicit Krylov method [81] and an implicit Crank–Nicolson method.
Although all methods use the same adaptivity in space, the global error of the space–time method is bounded
by �, while the time marching schemes control only the local time integration error. For consistency the
tolerances of the time marching schemes are set such that the global time integration error remains O(�)
(i.e. we set the tolerance such that the total number of time steps times the local error is O(�), with
� = 10�5). Note that the number of time steps increases with decreasing tolerance, and it is therefore not sur-
prising that we must use extremely small tolerances to match the global error of the space–time method. We
show the vorticity field computed at t = 0.2, t = 9.6, and t = 25.2 in Fig. 14. The spatial grids at corresponding
time levels are shown in Fig. 15 for both methods. Note the similarity of the final spatial grid in both methods,
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despite the very different numerical algorithms used. These results provide a good qualitative assessment of the
accuracy of the proposed numerical method compared with a standard adaptive time marching simulation.

4.5. Comparison of computational complexity and cost

One of the main contributions of the space–time method is to achieve a prescribed global space–time accu-
racy with reduced computational cost. Table 1 summarizes the total number of grid points, total CPU time,
and the minimum and maximum Dt used in the entire simulation for each of the three methods. The number of
active wavelets N (independent of the dimensionality) measures the computational complexity of a wavelet-
based adaptive DNS technique. Table 1 shows that the space–time method uses about 7 times fewer space–
time grid points than the Crank–Nicolson scheme, and about 18 times fewer than the Krylov method. The
reduction in CPU time is not as large, although it is still significant: the space–time method is about twice
as fast as the Crank–Nicolson method and about four times as fast as the Krylov method. There is clearly



Fig. 14. Vortex merging at Re = 1000, vorticity field at times t = 0.2, 9.6, 25.2 (from top to bottom): (a) space–time AWCM solution;
(b) Krylov time marching AWCM solution.
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additional overhead associated with the iterative solution of the vorticity equation on the space–time domain.
It is also interesting to compare the minimum time steps used in each method. Table 1 shows that the space–
time method uses a minimum time scale roughly 2 · 103 times larger than the Crank–Nicolson method and
500 times larger than the Krylov method while achieving a similar accuracy. Note that the smallest time steps



Fig. 15. Vortex merging at Re = 1000, grids at t = 0.1, 9.6, 25.2 (from top to bottom): (a) space–time AWCM; (b) Krylov time marching
AWCM.
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are applied only locally in the space–time method, while in the time marching methods they are applied homo-
geneously to all grid points.

Let us define the ratios of grid points in a single space–time subdomain RCNðtÞ ¼NCNðtÞ=NSTðtÞ and
RKRYðtÞ ¼NKRYðtÞ=NSTðtÞ. The space–time subdomains are [�2.5, 2.5] · [�2.5, 2.5] · [tn,tn + 0.4], n = 0. . .
100, t0 = 0. ST denotes the space–time method, CN denotes the Crank–Nicolson method, and KRY denotes
the Krylov method. The plots of RCN(t) and RKRY(t) in Fig. 17 show how the computational complexity of the



Fig. 16. Development of the space–time adaptive grid: (a) initial space–time grid; (b) first space–time grid; (c) 100th space–time grid.

Table 1
Comparison of the computational complexity and cost of the space–time and time marching DNS

Space–time Crank–Nicolson Krylov

N 25,041,353 174,823,834 455,960,480
Ratio of grid points 1 7 18
CPU time (s) 6.4 · 104 1.5 · 105 2.5 · 105

Ratio of CPU times 1 2.3 3.9
Dtmin 2.35 · 10�2 1.2 · 10�5 4.8 · 10�5

Dtmax 2.0 · 10�1 3.5 · 10�2 6.3 · 10�3

Number of time steps 61600 14234 27115

Note that the equivalent number of time steps taken in the space–time method depends on the spatial location.
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time marching schemes change with respect to the space–time method. It is interesting to note that the com-
putational complexity of the Crank–Nicolson scheme decreases roughly monotonically, while that of the Kry-
lov scheme reaches a peak at around t = 20 before finally decaying. This is likely due to the more accurate
error control scheme of the Krylov method [81], since both schemes are unconditionally stable. The time step
selected by the Crank–Nicolson scheme simply follows the average diffusion of vorticity (which decreases the
average length scale), while the Krylov scheme decreases the time step when the dynamics are most rapid, i.e.
during the intense vorticity filamentation that accompanies merger at about t = 20. Not surprisingly, the
space–time approach is most advantageous when the dynamics are most intermittent (i.e. during filamenta-
tion). At long times the vorticity simply diffuses and the flow is no longer intermittent in time.

The time marching methods use more active grid points than the space–time method because they do not
exploit temporal intermittency (i.e. the time step is the same for a locations) and they require much smaller
time steps to achieve the specified global time integration error. Note that if the natural time scale were uni-
form over the entire spatial mesh (as is the case at long times), all methods should use roughly the same num-
ber of grid points at a given time. Fig. 17 therefore demonstrates that the proposed method is promising for
highly intermittent problems. The reduction in the number of degrees of freedom is achieved using wavelet
compression in the time direction, which adjusts the time step according to the natural local time scale of
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the flow. In adaptive time stepping, time steps are determined according to the smallest time scale at a fixed
time. Thus, the slow time scale regions use an inappropriately small time step. In an efficient numerical method
the total computational cost should be proportional to the actual number of degrees of freedom of the dynam-
ical system. The space–time method attempts to achieve this.

5. Conclusions

The development of wavelet theory and its application to a wide variety of scientific problems has been an
active research area for the last two decades [82]. Although it has been shown that adaptive wavelet compres-
sion gives an optimal N-term approximation, and differential operators can be compressed using wavelets, no
one has previously attempted to solve initial value problems using an adaptive wavelet basis in both space and
time. Dynamical systems governed by nonlinear ordinary differential equations are often difficult to study
numerically since conventional numerical schemes suffer not only from globally accumulated error, but are
also not easy to adapt to multiple time stepping (i.e. different time steps for different scales or physical loca-
tions). A common example of the first problem is the numerical simulation of advection equations for arbi-
trarily long times [83,84]. Any Eulerian scheme is affected by spurious diffusive and dispersive error due to
inaccurate spatial discretization [85]: this error becomes intolerable if the time interval is very long [83]. Multi-
ple time scales are essential for the efficient simulation of equations which have highly intermittent structure,
such as turbulent flows.

The main contribution of this paper is the development of a simultaneous space–time adaptive wavelet col-
location method (AWCM) for nonlinear PDEs. The space–time AWCM provides an elegant solution to both
global error control in time and multiple time stepping. It is based on the multi-level AWCM for elliptic equa-
tions developed by Vasilyev and Kevlahan [46] extended to nonlinear problems using the multi-grid full
approximation scheme (FAS) [8]. The PDE is reduced to a single algebraic problem which is solved simulta-
neously on a space–time domain with appropriate boundary conditions. If necessary, the time domain can be
split into sub-domains using the flip-and-solve method described in the paper. This is useful for problems
where using a very large domain in the time direction is impractical due to memory constraints, or where
the stopping time is not known a priori. The method has been illustrated here by using it to solve the
1D + t-dimensional Burgers equation for fixed and moving shocks, and the 2D + t-dimensional vorticity equa-
tion for merging vortices at Re = 1000. In the vortex merging example, we found that the space–time method
uses roughly 18 times fewer space–time grid points and is roughly 4 times faster than a dynamically adaptive
Krylov time marching method, while achieving similar global accuracy. The decrease in the number of grid
points is due to two properties of the space–time method: local time-stepping (i.e. the size of time step adapts
locally in space), and global control of the time integration error (i.e. fewer time steps are required since the
time integration error is controlled globally and thus does not accumulate). The extension of the method to
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three spatial dimensions is straightforward in principle, but requires an efficient four-dimensional data-struc-
ture and parallelization of the algorithm. We are currently working on this extension of the method to higher
dimensions.

The examples presented here show that the efficiency and accuracy of the method is consistent with theo-
retical predictions. The algorithm finds the solution of nonlinear evolution problems on a near optimal grid to
a prescribed tolerance controlled by the wavelet threshold parameter �. In addition, the proposed numerical
method also provides global error control in time, something which is impossible in conventional time-stepping
schemes.

We have shown that one can apply a space–time wavelet adaptive method to compute the intermittent solu-
tion of nonlinear evolution problems on a near optimal grid in one and two spatial dimensions. Thus, this
method should be well-suited to direct numerical simulation (DNS) of turbulent flows. A naive estimate based
on the Kolmogorov micro-scale predicts that the number of active degrees of freedom in a DNS of turbulent
flow scales like Re3 in space–time domain, where Re is the Reynolds number and a uniform space–time grid is
assumed. However, when the flow is fully turbulent (and hence highly intermittent) the actual number of
degrees of freedom is much smaller than this naive estimate. We expect that a simultaneous space–time
AWCM will approximate the actual number of active degrees of freedom in such flows much better than clas-
sical time-stepping methods. In fact, we intend to use the number of active wavelets in the space–time domain
to estimate of how the number of degrees of freedom actually scales with Reynolds number. We would also
like to apply the present method to a dynamical system that involve a wide range of time scales, such as a set of
coupled reaction–diffusion equations involving chemical reactions with widely varying time scales.
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